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uO(x), ut(x,O)

u(0,t)
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u(l,t)

1
=
T
A
o

o — ' :
cannot exist in the smoothneos, e

c2([0,1] * [0,=)) N A,

A = (w0 e e 70,5170,y 0 Lho,- 17 0,1) |

\ and v € Lw([o,w):Lz(U,l))} !

| 1if the data chosen are so that 1 u2 x)dx " is sufficiently small

while IO 2(u6(x))dx is negative and sufficiently large in magnitude.

A

!
. !
'J%he physical implication is that in the deformation ¢f a nonlinear visco- |
i
elastic bar a shock will develop if the initial displacement is sufficiently i
small but has a sufficiently large gradient. !
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Introduction

Many authors have, in recent years, considered the inital-

boundary value problem

t
= 1 -
( utt(x,t) G(ux(x,t))x+ foa (t T)c(ux(x,r))xdr
(1.1) < + glx,t), 0 <x<1, t>0
u(x,0) = uo(x), ut(x,O) = vo(x), 0~ x <1
Lu(0,t) = 0, ull,t) = 0, t >0

which arises naturally in a theory of one-dimensional nonlinear
viscoelastic deformations of a solid continua in which the stress
6 at the point %, 0 £ x =1, and the time t > 0 1is given
by the constitutive relation

t

(1.2) a(x,t) = o(ux(x,t)) + { a'(t—T)G(ux(X,T))dT.
0

In {(1.1), wu(x,t) 1is the deformation, with associated velocity
ut(x,t) and deformation gradient ux(x,t), () 1is a non-
linear constitutive function, and a(t) gauges the memory of
the viscoelastic body; g(x,t) represents an external forcing
function, 1i.e., the intrinsic body force. The initial-boundarv
value problem (1.1) has been studied by MacCamy [1], Dafermos
and Nohel [2] and Hattori [3]. In both [1] and [2] it is proven
that under appropriate assumptions on a(-«), af(+), and g

global smooth solutions will exist if the initial data functions

un(*) and wv,(¢), and their gradients, are small in an appro-
J

0
priate sense., The results 5th1] are obtained by combining
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certain energy estimates with a Riemann invariants argument
which is due, essentially, to Nishida [4] while the results
in (2] are obtained by using Matsumura's refinement [5] of the
Courant, Fredrichs, Lewy [€] energy method; this latter paper
[2] also establishes the decay, as t + », of smooth solutions
of (1.1) and is applicable to higher dimensional problems.

In [1] MacCamy conjectured that smooth (classical) solutions
of (1.1) breakdown in finite-time if the initial data is
sufficiently large; such a result is well-known ftor the damped

nonlinear wave equation
(1.3) utt(x,t) + aut(x,t) = G(ux(x,t))x, a > 0

having been established by Slemrod [7] during the course of
his study of rectilinear shearing flows in a nonlinear visco-
elastic fluid. The damping mechanism in (1.1), however, is
much weaker than the strong damping present in (1.3), where
breakdown of class C2 solutions occurs when the gradients of
the initial-data are, pointwise, sufficiently large. Thus,
the breakdown conjecture of MacCamy appeared to remain open for
(1.1) until the recent Ph.D. thesis c¢f lattori [3] in which
the author reformulates the evolution equation in terms of the
resolvent kernel k(t) associated with a'(t), & device due
to Dafermos and Nohel [2], reduces this equation to a damped
first order system (with forcing and convolution terms) for

. and Ugs and then rewrites the resulting system in

Riemann invariant form; the auther [3] then applies the method




of Rozhdestvenskii [8] to the applicable tirst order system %
of equations for the Riemann invariants, the method consisting ’
of showing that characteristic curves of the same family, which i
start off sufficiently close together on the initial line, must

cross in finite-time and that at the instant where these curves

cross the associated Riemann invaridant must assume contradictory

values (a3 one approaches the point of intersection along the

respective characteristic curves). Hattori's result is obtained

by assuming special forms for the inital values of the Riemann
invariants; if the result in [3] is correct then, when combined

with the global existence results in [1] and [2], it would seem

to imply that smooth solutions of (1.1) must breakdown in finite-

time when the gradients ué(x), vé(x) of the initial-data are
sufficiently large in an appropriate sense, although it is not

clear (at least to this author) how large the gradients of the

data must be in [3] in order to produce breakdown of smooth

solutions. In what follows we propocse to present an elementary

proof of breakdown (;lobal nonexistence) of classical solutions

to (1.1) which retains the basic assumptions of [1], [2], and

{31, concerning the memor; function a(t) and the nonlinearity

o(zg), and employs the dissipative nature of the resolvent kernel

k(t) associated with a'(t), a modified concavity (differential
inequality) argument, and a convergent integral argument to
sbtain an upper bound for the time of existence o! a4 smooth

solution.
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2. Basic Assumptione anld an Lnerpgy lemma

The usual assumptions on the pertinent functions appearing

in the equation (1.1) are as follows [1], [?]:

(A) a:{0,®) » RY

al+) ¢ Ca[O,m), a,a',a",a'"™ bounded on [0,») ;
a(t) = a_ + A(t), a_ > 0, a(0) = 1 |
-1 A(m)(t) >0, 05t <w,m=0,1,2

3 A™ ey € Lleo,e), j,m o= 0,1,2,3.

(B) o:R” » R

g € C3(Rl), o(0) = 0, a'(g) =€ > 0, Vi ¢ Rl.

(¢) g:[0,9 x RY » gt

g.8, € L1([0,%); L2(RM)

2. 00 12,01
p)x’g-t.t’gtx € L‘ (rO, ),L (R )).

The assumption (C) will not be relevant in §3 where, for the
sake of simplicity, we take the external forcing g = 0;
in (R) we need, in fact, only require that o ¢ Cl(Rl). If
we introduce the resolvent kernel k(t) associated with

a'(t) via
(2.1 k(t) + (a'%k)(t) = =-=a'(t), 0 t < o

rt
(a'#k)(t) = J a'(t-1)k(t)dr
0




[&a]

then it can be shown that k(.) ¢ CZ(O,w) it a(«) ¢ Cs[O,w).

Furthermore k(t) satisfies k, k', k" bounded on [0,»),

k(m)(t) € Ll[O,w) m = 0,1,2 and the important dissipation
property

t 3 T

J vity & J K(t-2)v(dr dt = 0,

0 3T Jg
(2.2)

vt > 0, vv(+) ¢ L2(0,1).

In what follows we will also make the assumption that

(1) { k' 200d) < w
0

E and we will append to (B) the mild assumption that Vg ¢ Rl

and some a > 0

(2.3) arn(z) = ¢I'(z)

where IL(g) = fg o(p)dp. Growth restrictions of this kind on
the nenlinearity o have appeared before in studies on noa-
linear elasticity [3], [10]. Using the definition (2.1) of

k(t) it is not difficult (see [2], §2) to reduce the evolution

equation in (1.1) 1o

¥
? . "
(2.4) utt(x,t) 5t [0 k(1 »)dt(x,r)i‘

= o(ux(x,t))x + o({x,t), 0 . x ~ 1, t >0

wher o

t
glx,t) + f k(t-1)p(x,1)dT + k(t)vo(x).
0

(2.5) &(x,t)

4
13

b
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In §3 we will assum= both that g(x,t) = 0, 0 - x - 1, t > ¢
and ut(x,D), 0 = x =1 so that ®(x,t) =0, 0  x - 1,
t > 0. We now introduce the energy functional

1

1
(2.8) O f ul(x, t)dx + f Ju_ (x,t))dx
6 0 X

and prove the following

Lemma. For as long as smooth (classical) solutions of (1.1)
exist

1T
(2.7 E(T) = E(0) + J ut(x,t)k(t)ut(x,O)dt dx.

f
oo

Procf: We multiply (2.4) by (ut(x,t) and integrate over

(0,11 *x {0,T), T > 0, so as to obtain

1,T
fﬁfﬁut(x,t)utt(x,t)dt dx

1,7 5 rt

+ [ [ u, (x,t) (5= J k(t-1)u, (x,T)d1)dt dx
t 3 t

0‘0 0

ot

[l T
= )0]0 ut(x,t)O(ux(x,t))th ax

1T _
+ J f u, (x,0)k(t)u, (x,0)dc dx.
0 t t

By (2.2) if u (x,") ¢ 2%00,T), 0 < x <1 then

(T S [t
J u, (x,t) (<= { k(t-t)u, (x,T)di)dt - O
a t ot 0 t

for all x, 0 - x . 1. It therefore follows that




1,T 2
f [ ut(x,t)dt dx

%l

T,1l
f [ ut(x,t)o(u (x,t)) dx dt
0l 0 X X

p1T
+ Jofo ut(x,t)k(t)ut(x,O)dx dt.

Integrating the first term on the right hand side of this
estimate by parts and using the boundary conditions in (1.1)

we obtain

. T _ T
5 JD ut(x,t)|0 dx = [0[ xt(x,t)o(ux(x,t))dx dt
l(T
+ [ J ug (x, t)k(t)u (x,0)dt dx
0]

0

T
r
+ { J Uy (x, t)k(t)u (x,0)dx dt
Joln

0

T 3
f = ([ X(ux(x,t))dx)dt
1

by virtue of the detinition of . Thus
1 1

1 2 T - T

5 [0 u (1) [ dx + Io Hu (x,t)dx|

1,T
< [ J u (xt)k(tdu, (x,0)dt dx
0do t t

and the Lemma follows directly from the derfinition of E(t);
in particular, if ut(x,O) =0, 0 = x =1, then for as long as

classical solutions of (1.1) exist, E(t) - [£(0).
Q.E.D.




3. A Differential incauatity for Solutions of (1.1)

In this section we derive a basic differential inequality
which 1s satisiied by a simple functional defined on sclutions

CC

the initial-boundary value problem (1.1). By a smooth global

solution of (1.1) in this section we shall understand a functicn

ulx,t) € c2([0,11x[0,%)) 0 A

where
e 2 1 2
(3.1) A = {wx,t){wel, ([0,®); LCO, L)Y NLT({D,=); L°(0,1))

and w_ e L7(10,%); L2¢o, 11,

Thus, if u € A, 3 C_ < « such that
1

(3.2) sup [f (wz(x,t) + wz(x,t))de
[0,=) 0

wpl
+ [ f w2(x,t)dx dt - C_.
olg )

Our aim in §4% will be to show that under appropriate assumptions
on the initial-data there cannot exist solutions
G(x,t) € 22([0,11%[0,2)) 1 A of (1.1). To this end, let
4 -0, t - 0 be arbitrarv nonnegative vonstants and ccasider
the functional

.1 )

(3.3) ult) = wix,t)ax + Blt+ 1%, T >0
D

If ul{x,t) 1is a solution of (1.1) which kbelongs to the indi-

cated smoothness class then we claim the following:

§ o o T PR




e

TR DPT
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Lemma., It alx,t) « CTCo,01=[0,*)) 4 A iz a solution of

(2.1) then for ali t > 0, UCt) ac piven by (5.3) satisfies

VD0t 2 —2auCE0) + v ).

(3.4%) uu - (

Proof: We are assuming in this section that ut(x,O) = 0,

0 + x =1, and that g{(x,t} = 3, (x,t) € [0,1])x[0,») so
that $(x,t) = 0, (x,t) € {0,1]x[0,2). Directly from (3.3)
and the form (2.4) of the evolution equation, with & = 0,

we compute

(1

(2.5) ey = 2 Jg u dx *+ Cs(t+t)

= 21 ulx,t)elu_(x,t)) ax
’ X P

+

r

1
- 7 ( u(x,t);é—-

I~
X j k(t-1)u_{x,0dr dx

Y

uf(x,t)dx + 3

= - 2 b a g t)oCy (xat))dx
A P

s [T
- 7 Ll('/lst) b !
Jg

k(t~1du, {x,1¥d1 dx
G L t

e

ui(x,t)&x + 720,




ke cac

.v.._
- e -

1
by adding and subtracting the gquantity 2a [ f(ux(x,t))dx
0

to (3.63) and employing the hypothesis (2.3) we obtain the
estimate

1 5 1
ut(x,t)dx - 20 [ E(ux(x,t))dx

(5.7) Ult) = 2 f
0

0

1 3 {‘t
- 2 J ulx,t) 3% | k(t-t)u _(x,T)dt dx + 28.
0 t g t

We now replace ]é Z(HX(X,t))dX in (3.7) by

E(t) - % fé ui(x,t)dx and obtain from (3.7)

. 1
(2.8) UCt) = (2+w) ! ui(x,t)dx - 20E()
it

) 3 t .- ‘
- 2 J ulx,t) == k(t-tdu_(x,tidt dx + 283.
0 ot 0 t

However, by the Lemma of §2 and our assumption that ut(x,O) =0,

0 = »w =1, E(t) £ €(0), t > 0 and, thus

. 2
(3.9 u(t) = (2+a) [ ui(s,t)dx - 2uE(3) + 28
0 |
1 3 {t ?:
- 2 { w, ) =% k(t-T)ur(X,T)df dx. [
1Y) 3t in i

> ' 2 p 2 é
As U (t) = 2([é uutdy)L + 287 (t + tD) » we then counpute that |




LAy o

11

UCou(e) - (“*Z)U (t) =

i 1 1
(2+a)[[ ui dx f u2 dx -~ (f uutdx)QJ
0 Lo 0 i
1 ?
v o2+ B(tet )7 f u? ax f
0 0 t :

1
+ [-2 E(O) + 28 + 6(t)][f u2 dx+'8(t+t0)2]
0

-

(2+u)82(t+t0)2

v
|

(2+a)82(t+t0)2

+

(~20E(D) + 2B + §(t)UCL)

where

1 3 rt
s(t) = =2 J ulx,t) = k(t-t)u_(x,t)dt dx.
0 2t |, t

We rewrite this last estimate as

f\‘

(3.10)  UHuct) - 2230204y »

“7‘
(-20E(0) + 8CE)IU(L)
+o2BUCt) - (2ra)BUCL)
Pz gl(e) - (240087 (trt )’
(=20EC0) + §CEIUCL) - aBU(E)
where

n f‘-
(2+0)BUCL) - (?+a>32(t+t0>‘ = v | ul dx > 0.
N

Thus



(3.1 Goue - DI 2 -2auC)E0) + § - ﬁ%ﬁl :
o
By the definition of 6(t)
1 t
§(t) 1 [ , 3 I
- = = ul{x,t) — k(t-1)u, (x,1)dT dx.
20 a g ? ot 0 t 7

Thercfore,

§(t)
70

IA

.l , ft
(3.12) - ﬁl[ u(x,t) =— { k(t-T)u_(x,1)dT dx|
Q 0 T

3t 0
1 1 t
uutdx4-f u(x,t [ k+(t-T)ut(x,T)dex|

= ko f
o 0 0

0
rl

1
1 k(0| (] uzdx)%(f
@ 0

IA

1
uidx)1
0

2. 4% Lt 2.
u“dx) (f (( X (t-t)u, (x,t)dTt)"dx)
0 ‘o t t

1
+

Qi+

I
( 1
lo

=i

1, 1
(f uzdx)a[lk(O)l([ uidx)%
0 0

el rt ? '
+ ( (J K (t—r)ut(x,T)dT) dx) 2],
g ‘0

Now,
2 3
kt(t—r)ut(x,r)dr) dx)? <

t ., et 5 L
(} [[ x-(t-")ar J usi{x,t)dTt Jdx) ™.
0 t t

0

But, for all t < =

. t ) , .
k/(t—1)d1 f | AR D TT L } KPUAYdN o
t 0

0

by assumption (D).

~T™
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Therefore, for all t, 0 ¥ t < «

(fl t 2. %
J ( kt(t-T)ut(x,T)dT) dx) <
0°‘0

e 1 1.t
<J k'Q(A>dx>f(f J u?(x,1)dtdx) ?.
0 olg °

Combining our estimates with (3.12) and using our hypothesis

that u € A we find that

1 1 L
(3.13) - 6;2) < % sup (J u2(x,t)dx)%[|k(0)| sup (I ui(x,t)dx)2
(0,°) ‘0 [0,®) ‘0
[~ w,] .
+ (J k'z(x)dX)%([ I uZ(x, 0y drax) ¥
0 0-0
= C°° < o,

Thus, by (3.11) we have, for all t < «

(3.10)  doue) - Hitw =
- 20U(EICECD) + £+ C) Q.E.D.




4. _Nonexistence of 4 Clags of Smoott Solutions
In this section we will show that solutions
u € Cz([O,l] x [0, )Y N A of (1.1) cannot exist if
f% Z(ué(x))dx i35 negative and sufficiently large in magnitude.
Nur approach is to assume that u € CQ([O,l] x [Dy»=)) is a

solution of (1.1) and then derive a contradiction from the

differential inequality (3.14). Tt is rather simple at this

- .

stage to derive a restricted but still somewhat interesting first

result for 1f B - ) and
¢!
E(0) = J Jul(x))dx < 0 with
0 0
l -
I[q L(ué(x))dx| > B/2 + C_

then (3.1%) implies that tor all t > O

(4.2) UCSHUCE) - (y+1IUCt) > 03 vy = a/2 > 0.
a? -

But (4,2) is equivalent to ——7(U Y(¢t)) = 0, 0 < t <« which
dt

impliec that

(4.2) UCes - UCoiTL -y L0)y g
. 3 </ | Y Uz-m-

g oo < ey

-1/y

However, U(0) = fé Ug(x)dx + Bté and U'(0) = 2Bt0 as
ut(x,O) =0, 0= x = 1. Therefore, for 0 = t <« any
solution u € C2([0,l] x [0,#)) N A satisfying (4.1) is such

that the tunctional U(t) is bounded from below by a

function which blows up as




S I

2 2
uo(x)dx+8t0

25Yt0

1
(4.4) t>t, = f
-0

o

Ao U(t) = ]é uz(x,t)dx + B(t-+t0)2, the Lz(O,l) norm of
u(+,t) cannot be finite for all t > 0 contradicting the

i assumption that u(x,t) is a smooth solution of (1.1), i.e.

“ a sclution in the class C2([0,1] x [0,2)) 1 A. We state this

3 first result as

Theorem 1. If g(x,t) = 0, (x,t) € (0,1) x [0,»),

]

s ut(x,O) = 0, 0 = x =1, then under the hypotheses of §2 on
33

f alt), k(t), and o no solutica of (1.1) can exist 1in

3 C2([°,l] *» [0,2)) N A whici satisfies (u.1)fl)

A much better result than Theorem 1 can be obtained if we

rewrite (3.14) in the form

(4.1) ueuct) - (I3 2 —2vZ(ay+duc)
i - N 2 o
where v = of2 and v" = (g3 (ECG) + 072 + C ).

Tn the analysis that follows we will want the initial data

> ? .
u(x,0) = uo(x) to be such that UZ(G) > 4v°UC); this latter
condition is easily seen to be eguivalent to

2,2
Bty

(4.2) 5 > (GH :

1
(— )(f T(ul(x))dx + 3/2+C) .
o 0

féug(x)dx+8t

If, as before, we choose u,(x) so that ]é X(ué(x))dx <0

then (4.7) is equivalent to

tl)Thus it u ¢ C?([O,l] x [0,®)) 1 A is a solution of (1.1) then

we must have the lower bound €+ 8/2 = \fbi(ué(x))dx\ {for
all g > 0.
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tl
(4.3) IJ Plugtxdax] > ¢, + (8/2)
0
. 2.2
; a+l B8 ts
: S ¢ a )( 1 2)
.o fO (x)dx+8t
! 1 2
, If we choose f uo(x)dx to be very small then
' 4]
r
. Bt
i +
| c, + 8/2 - (XD (gm0 —)
, Joug(xd)dx+Bt
B / \
- = c, ¢ 8/2 - (B[ :
@ (f (x)dx)+l
3 Bt ¢
i
1 1 at+l _ byl .
. (L oout =, o= R(s4 ) 00N

! C,*+ B =) . 5t &

for B chosen sufficiently small. Thus for fé ué(x)dx and

B > ) chosen sufficiently small the right-hand side of (4.3)

i~ jpositive 5o that the condition (4,3), which requires that

!f% ?(ué(x))dx{ be sufficiently large, 1is not vacuous. We
‘ . 1,1, .
now chioose B to be small enouph so that £ - 8(7’-5) >0
bt larse enough a0 that | [ITCul(x)dax] «¢ ~acks L, *
nt o 1arg enougs 9 a7t ol 0 \ T 3
. i
As U0 = verg o0, @Tien = T GGy <0 sy

continuity umY (t) <2 for t sufficiently small. If

uY (t) £ 0 for all t > 0 then let t = t® be the first

time such that u’Y (t™) = 0; we want to show that no such

oo

t* can exist. Since u(t) » 0, t ¢ [0,t¥], we may rewrite
(4.1) as
{(2)

B to be
A precise sppc1f1cat10n of what is meant by takin
su§f1c1ently large is given in the Remarks following Theorem 2.

VS
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(o) uY () s 2yvi(eyrngm D)

(t), t ¢ [0,t*].

.
e

Oon [0,t%), u”Y (t) < 0. Thus if we multiply (4.4) through by
20”7 (t) we obtain

(v uY (o)

2 u7Y (0w (9 = ayviyrDu

-(y+1l)

which is easily seen to be equivalent to

] d -y 2, 4,22 d  —(2y+D) ]
(4.5) It (u ")l > Yy v 3t 7} (t).

Integrating this inequality over [0,tl, t ¢ [0,t*]1 we obtain

(4.6) tu” Y1) 12 - uy2o? 2Dy, Hy > O t
where E
(s5.7) iz 2D it i®or-uvil > o

0

by virtue of the hypothesis (4.3). If we now write (4.6) in the

form

Gy T - 2ve n YD () |
{3:7(t) + 2yvu_(Y+l/2)} z Hy > 0.

Since 3:7 (t) <0, t ¢ [O,t*), the first factor on the

left--hand side of (4.8) is negative and thus

(4.9) T

/2Dy ¢ < 2R

(t) < =2yv U
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By continuity this last relation must hold at t = t*, thus

contradicting the assumption that u™Y (t*y = 0. Hence,

- 2
WY (t) <0 for all t > 0 if wu € C°(L[0,1) x [0,%)) 0 A is

a solution of (1.1). The estimates (4.6) and (4.9) are,
therefore, also valiid for ail t > 0 if wu ¢ C2(lU,1]‘ [o,=))n

Clearly we may rewrite the estimate (4.6) in the form {

(6.10)  T-vm " D nlicen? 2 Hy o+ uy?y? g2

hY

(v

from which it follows that

-y " Dot = (H0+uy?v2 um (21 4y, 1/ 2

. + . . .
tlowever, - v 1)(‘t)U(t) <0, t >0, so this last estimate

is equivalent to

2 ,2(y+1)

(4.11) U() = (uviult) + Hov ? u /2

)

If we let T > 0 and integrate (#.11) over [0,T) we obtain

the estimate

ueT) :
(4.12) T =< f dv :

- < wo
' =7 Y177 .
Ueod (uv‘v+H0y zy2Cy+iyyi/

Since the integral on the right-hand side of (4.12) is con-
vergent, for all nonnegative values of L(T), the estimate
(4.12) clearly implies that T = thax < °» thus contradicting

our assumption that u e CZ([O,l] « {0,9)) n A 1ic a solution

of (1.1); this last estimate also provides an upper bound on

+he maximal time interval [O,tm ] of existence of a smooth

ax
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solution of (1.1). We state our result as

Lheorem 2. If fé ug(x)dx is chosen sufficiently gmall

. 1 . ..
while [{ LCup(x))dx < 0 with ]fé LCuf(x))dx| sufficiently
large then no solution of (1.1) can exist in the class
C2([O,l] x [0,2)) N A and the maximal time of existence of a

smooth solution must satisfy the estimate

rw

t < du

max = o0 (i y 2T, 72

)

Remarks. We elaborate briefly here on the hypothesis of

1
0

(4.3) will be satisfied provided II% X(ué(x))dx! >C_ - 8(%*'%).

Theorem 2. If [ ug(x)dx is chosen sufficiently small then
We view this latter condition as follows: Suppose that

?
u € C°([C,11x[0,°)) N A ic a solution of (1.1) corresponding
to a specification of u(x,0) = uO(x). Then we may certainly
choose 6, 0 < 8 < 1, so small that |fé Z(ué(x))dx[ > 8C_

If we now choose B so large that

sc, > ¢ - B(%+é)

Cc (1-8)
i.e., if we take B » —--—ro then for thi. cheoice nf § wc
1 1
(—2 + ")
G
would have |[é Z(ué(x))dxl > C - B(é 1 é), which in turn
P4

leads to a contradiction of the assumption that

u e Cc2([0,11 % [0, ™)) 0 A.
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